Scientists at the Department of Energy’s Fermi National Accelerator Laboratory have achieved the world’s most precise measurement of the mass of the W boson by a single experiment. Combined with other measurements, a tighter understanding of the W boson mass will also lead researchers closer to the mass of the elusive Higgs boson particle.
The Higgs boson is a theoretical but as yet unseen particle, also called the "God particle," that is believed to give other particles their mass. The W boson, which is about 85 times heavier than a proton, enables radioactive beta decay and makes the sun shine.
Today's announcement marks the second major discovery in a week for the international DZero collaboration at Fermilab. Earlier this week, the group announced the production of a single top quark at Fermilab's Tevatron collider.
DZero is an international experiment of about 550 physicists from 90 institutions in 18 countries. It is supported by the U.S. Department of Energy, the National Science Foundation and a number of international funding agencies. In the last year, the collaboration has published 46 scientific papers based on measurements made with the DZero particle detector.
The W boson is a carrier of the weak nuclear force and a key element of the Standard Model of elementary particles and forces, which also predicts the Higgs boson. Its exact mass is crucial for calculations to estimate the likely mass of the Higgs boson by studying its subtle quantum effects on the W boson and the top quark, an elementary particle that was discovered at Fermilab in 1995.
Scientists working on the DZero experiment now have measured the mass of the W boson with a precision of 0.05 percent.